Science Foundation Grant CHE 78-18581. High-resolution mass spectra were obtained at the Midwest Center for Mass Spectrometry a National Science Foundation Regional Instrumentation Facility (Grant CHE 8211164).

Registry No. (±)-1, 89362-24-3; (+)-1, 38129-37-2; 10, 92098-00-5; 11, 92098-01-6; 12, 92216-23-4; 13, 92098-02-7; 14, 95782-30-2; 15, 92216-24-5; 16, 95694-56-7; 17, 95782-31-3; 18a, 95694-57-8; 19a, 95694-58-9; 20a, 95694-59-0; 21a, 95694-60-3; 22a, 95694-61-4; 23a, 92098-06-1; 24a, 95782-32-4; 24b, 95694-62-5; 25a, 95782-33-5; 25a (R₁ $= R_2 = SiMe_2Bu-t$, 95694-74-9; **25b**, 95694-63-6; **26a**, 95782-34-6; **26b**, 95782-35-7; 27a, 95782-36-8; 27b, 95694-64-7; 28a, 95782-37-9; 28b, 95782-38-0; 29a, 95782-39-1; 30, 92098-07-2; 31, 92125-39-8; 32, 95739-42-7; **33**, 92125-40-1; **34**, 92125-41-2; **35**, 95694-65-8; **36**, 95694-66-9; 37, 95694-67-0; 38, 95739-44-9; 39a, 95782-40-4; 39a ([3.2.2] isomer), 95694-68-1; 39b, 95782-41-5; 39b ([3.2.2] isomer), 95694-69-2; 40a, 92098-05-0; 40b, 92098-14-1; 41a, 95782-42-6; 41b, 95782-43-7; 42a, 92216-25-6; 42b, 92098-15-2; 43a, 92098-08-3; 43b, 92098-16-3; 44a, 92098-09-4; 44b, 92098-17-4; (+)-44b, 95694-70-5; 45, 63777-16-2; 46, 92125-61-6; 47, 92098-11-8; 48, 92216-27-8; 49, 92216-26-7; 50, 92216-28-9; 51, 92098-03-8; 52, 92216-29-0; 53, 95782-44-8; 54, 92098-12-9; 55, 95739-48-3; 57, 95694-71-6; 58, 95694-72-7; 59, 92125-62-7; (+)-59, 95694-73-8; (±)-2,2,4-trimethyl-1,3-dioxolane-4-carboxaldehyde, 81600-36-4; (-)-2,2,4-trimethyl-1,3dioxolane-4-carboxaldehyde, 79243-92-8; γ -butyrolactone trimethylsilyl enol ether, 51425-66-2.

Synthesis of Skeletally Labeled 3-Methylhexaborane(12) and 2-Methylpentaborane(9): ¹⁰B and ¹¹B NMR Spectral Studies of Base-Catalyzed Intramolecular Rearrangements in 2-Methylpentaborane(9)

Donald F. Gaines* and Darrell E. Coons

Contribution from the Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706. Received August 29, 1984

Abstract: Selectively ${}^{10}B$ labeled 3-MeB₆H₁₁ has been synthesized from 1-MeB₅H₈ and 96% ${}^{10}B$ labeled B₂H₆ by modification of a previously published procedure. Positions B(1), B(2), and B(6) of the labeled 3-MeB₆H₁₁ each contain 46 ± 5% ¹⁰B while B(3), B(4), and B(5) are isotopically normal (19% ¹⁰B). Reaction of this compound with dimethyl ether produces 2-MeB₅H₈ which is ¹⁰B enriched at B(4) (47 ± 5% ¹⁰B) and, to a lesser extent, at B(3,5) (30 ± 5% ¹⁰B). In the presence of 2,6-lutidine the ¹⁰B label in the 2-MeB₅H₈ equilibrates into all boron positions except the methyl-substituted B(2). These are the first direct observations of the movement of cluster boron atoms in the isomerization of pentaborane(9) derivatives. Several proposed isomerization mechanisms are examined in light of these results.

Interest in the chemistry of cluster compounds is rapidly expanding.1 Internal cluster rearrangement and exchange processes are an important area of cluster chemistry, though there are few examples of experimentally verified mechanisms of such rearrangements. A number of different types of intramolecular cluster rearrangements and exchange processes have been observed. For example, a cluster may undergo internal site exchange of terminal or bridging groups (or atoms) attached to the periphery of the cluster while the cluster framework atoms remain intact and static. Such exchange has been studied extensively in metal carbonyl clusters^{2,3} and in metallaborane clusters.⁴ A cluster may also undergo internal atom rearrangements that change the cluster shape or produce a different geometric isomer but that do not involve movement of terminal substituents to different cluster atoms. A classic example of this type of rearrangement is the isomerization of the icosahedral carboranes (eq 1).^{5,6} Intramolecular cluster rearrangements may also involve a combination of terminal substituent movement and cluster atom movement.

$$1,2-C_{2}B_{10}H_{12} \xrightarrow{450 \text{ °C}} 1,7-C_{2}B_{10}H_{12} \xrightarrow{620 \text{ °C}} 1,12-C_{2}B_{10}H_{12} (1)$$

Extending our interest in intramolecular exchange processes in boranes and metallaborane clusters, we address in this paper several aspects of the isomerization mechanism of the squarepyramidal pentaborane(9), B_5H_9 , framework. Pentaborane(9)

(6) Papetti, S.; Heying, T. L. J. Am. Chem. Soc. 1964, 86, 2295.

derivatives have long been known to undergo isomerization reactions in the presence of Lewis bases. The most complete example, though not the first, is trimethylsilylpentaborane(9)⁷ (eq 2). The μ -(Me₃Si)B₅H₈ contains the Me₃Si group in a bridging position, analogous to a bridging hydrogen atom, between two adjacent boron atoms in the base of the pentaborane pyramid.

$$\mu - (Me_3Si)B_5H_8 \xrightarrow{\text{Et}_2O} 2 - (Me_3Si)B_5H_8 \xrightarrow{\text{HMTA}} 1 - (Me_3Si)B_5H_8 \xrightarrow{(2)}$$

The silicon is considered to be bonded to the two adjacent boron atoms by a boron-silicon-boron, three-center, two-electron bond.8 Isomerization of the μ -(Me₃Si)B₅H₈ occurs in diethyl ether to form $2-(Me_3Si)B_5H_8$, in which the Me₃Si group occupies a terminal substituent position on the base of the pentaborane pyramid. Further isomerization to 1-(Me₃Si)B₅H₈ occurs at elevated temperatures or in the presence of stronger bases such as hexamethylenetetramine. The mechanisms of these processes in various pentaborane(9) derivatives have been studied in our laboratories9 and elsewhere.¹⁰

See, for example: Behnken, P. E.; Belmont, J. A.; Busby, D. C.; Delaney, M. S.; King, R. E., III; Kreimendahl, C. W.; Marder, T. B.; Wilc-zynski, J. J.; Hawthorne, M. G. J. Am. Chem. Soc. 1984, 106, 3011-3025.
 Band, E.; Muetterties, E. L. Chem. Rev. 1978, 78, 639-658.
 Geoffroy, G. L. Acc. Chem. Res. 1980, 13, 469-476.
 See, for example: Gaines, D. F.; Hildebrandt, S. J. In "Metal Inter-context of the Chem. Rev. Dec. Dec. Dec. Dec. Dec. Dec.

actions with Boron Clusters"; Grimes, R. N., Ed.; Plenum Press: New York (5) Grafstein, D.; Dvorak, J. Inorg. Chem. 1963, 2, 1128–1133

^{(7) (}a) Gaines, D. F.; Iorns, T. V. J. Am. Chem. Soc. 1968, 90, 6617-6621.
(b) Gaines, D. F.; Iorns, T. V. Inorg. Chem. 1971, 10, 1094-1095.
(8) Calabrese, J. C.; Dahl, L. F. J. Am. Chem. Soc. 1971, 93, 6042-6047.
(9) (a) Gaines, D. F.; Iorns, T. V. J. Am. Chem. Soc. 1967, 89, 3375.
(b) Gaines, D. F.; Iorns, T. V. Ibid. 1970, 92, 4571-4574.
(c) Gaines, D. F.; V. Ibid. 1970, 92, 4571-4574.
(d) Gaines, D. F.; Jorns, T. V. Ibid. 1970, 92, 4571-4574.
(e) Gaines, D. F.; V. Ibid. 1978, 17, 806-809.
(f) Heppert, J. A.; Gaines, D. F. Ibid. 1983, 22, 3155-3163.
(h) (a) Onak, T. P. J. Am. Chem. Soc. 1961, 83, 2584.
(h) Onak, T. P.

 ^{(10) (}a) Onak, T. P. J. Am. Chem. Soc. 1961, 83, 2584. (b) Onak, T. P.;
 Gerhard, F. J. Inorg. Chem. 1962, 1, 742-744. (c) Hough, W. V.; Edwards,
 L. J.; Stang, A. F. J. Am. Chem. Soc. 1963, 85, 831. (d) Onak, T. P.; Gerhart,
 F. J.; Williams, R. E. Ibid. 1963, 85, 1754-1756. (e) Burg, A. B.; Sandhu,
 J. S. Ibid. 1965, 87, 3787-3788. (f) Friedman, L. B.; Lipscomb, W. N. Inorg. S. S. *Ibid.* 1965, *5*, 757-768. (i) Friedman, E. B., Elsconto, W. *Hubg. Chem.* 1966, *5*, 1752-1757. (g) Onak, T. P.; Dunks, G. B.; Stearcy, J. W.;
 Spielman, J. *Ibid.* 1967, *6*, 1465-1471. (h) Johnson, H. D.; Geanangel, R.
 A.; Shore, S. G. *Ibid.* 1970, *9*, 908-912. (i) Tucker, P. M.; Onak, T.; Leach,
 J. *Ibid.* 1970, *9*, 1430-1441. (j) Brice, V. T.; Shore, S. G. *Ibid.* 1973, *12*, 2020. 309-313.

Synthesis of Skeletally Labeled Boranes

Using a combination of ¹H, ²H, and ¹¹B NMR studies of selectively deuterium labeled pentaborane derivatives, we have verified that at least two very different activation barriers are represented by the isomerizations in eq 2. In the first (lower energy) process, the Lewis base apparently becomes associated with a boron atom in the base of the pentaborane pyramid to produce an arachno intermediate having a B_5H_{11} -type structure. In this complex a bridging trimethylsilyl group is able to exchange into an adjacent, less sterically crowded terminal position forming $2-(Me_3Si)B_5H_8$ quantitatively. The mechanism for the isomerization of 2-(Me₃Si)B₅H₈ to 1-(Me₃Si)B₅H₈ is more complex and has not been directly addressed by previous studies. Many pentaborane derivatives undergo such isomerizations, presumably via similar mechanisms. The primary question regarding movement of substituents between 1- and 2-positions (apical and basal positions, respectively) is whether these terminal substituents move from one boron atom to another on the surface of the cluster via a 1,2-shift or move by rearrangement of the boron atoms without breaking the boron-substituent bond, via a cluster rearrangement. In order to address this question we have undertaken the synthesis of a selectively ¹⁰B labeled pentaborane derivative.

Selective isotopic labeling of molecular cluster atoms, though generally difficult to achieve, potentially provides a direct method for obtaining detailed information about cluster rearrangements. In this area, boron hydrides offer clear advantges over most other cluster systems. The natural isotopic composition of boron is approximately 81% ¹¹B and 19% ¹⁰B,¹¹ and both isotopes are readily observable by NMR spectroscopy $(I_{11B} = 3/2; I_{10B} = 3)$ and exhibit strong chemical shift-structural correlations. As both isotopes are quadrupolar, coupling among the boron nuclei within borane clusters does not generally complicate their spectra. Several boron compounds enriched to 96% ¹⁰B are commercially available and affordable.

The only known route to B_5H_9 that is suitable for introduction of a boron isotopic label is not from smaller boranes but from hexaborane(12), B_6H_{12} , by its reaction with dimethyl ether (eq 3).¹² A high-yield synthetic route to B_6H_{12} (eq 4-6)¹³ and

$$\mathbf{B}_{6}\mathbf{H}_{12} \xrightarrow{\mathbf{Me}_{2}\mathbf{O}} \mathbf{B}_{5}\mathbf{H}_{9} + \frac{1}{2}\mathbf{B}_{2}\mathbf{H}_{6}$$
(3)

 $3-MeB_6H_{11}$ (eq 7–9)¹⁶ was recently developed by Shore et al. We report here the modification of this synthetic route for the preparation of the first examples of ¹⁰B labeled hexaborane(12) and pentaborane(9) derivatives and a study of the isomerization mechanism of ¹⁰B labeled 2-methylpentaborane(9) with ¹⁰B and ¹¹B NMR spectroscopy.

$$B_{5}H_{9} + KH \xrightarrow[Me_{2}]{-78 \circ C} K[B_{5}H_{8}] + H_{2}$$
 (4)

$$K[B_{5}H_{8}] + \frac{1}{2}B_{2}H_{6} \xrightarrow{-78 \text{ °C}} K[B_{6}H_{11}]$$
(5)

$$K[B_{6}H_{11}] + HCI \xrightarrow{-112} B_{6}H_{12} + KCI$$
(6)

$$1 \cdot \text{MeB}_{5}\text{H}_{8} + \text{KH} \xrightarrow[\text{Me}_{2}\text{O}]{} \text{K}[1 \cdot \text{MeB}_{5}\text{H}_{7}] + \text{H}_{2}$$
(7)

$$K[1-MeB_{5}H_{7}] + \frac{1}{2}B_{2}H_{6} \xrightarrow{-78 \text{ °C}}{Me_{2}O} K[MeB_{6}H_{10}]$$
(8)

$$K[MeB_6H_{10}] + HCl \xrightarrow{-112 \circ C} 3 \cdot MeB_6H_{11} + KCl \qquad (9)$$

Results

Synthesis of ¹⁰B Labeled 3-MeB₆H₁₁. Selectively ¹⁰B labeled $3-MeB_6H_{11}$ was obtained by modification of the published synthetic procedure for isotopically normal 3-MeB₆ \hat{H}_{11} (eq 7-9)¹⁴

10B-LABELED 3-MeB₆H

Figure 1. Proton-decoupled ¹⁰B (21.4 MHz) and ¹¹B (64.0 MHz) NMR spectra of ¹⁰B labeled 3-MeB₆H₁₁ in pentane solution. Proposed resonance assignments are shown below the ¹¹B spectrum (x = impurities).

with 96% ^{10}B labeled diborane, $^{10}B_2H_6$, as the label source. Reaction times were kept to 30 min or less per step, including solvent removal, and the temperature of the reaction mixture was not allowed to rise above -78 °C. Following the protonation at -112 °C (eq 9), the 3-MeB₆H₁₁ was isolated in greater than 80% yield. It is important to note that in our initial experiments with $^{10}B_2H_6$ in the synthesis of B_6H_{12} (eq 4–6) and 3-MeB₆H₁₁ (eq 7–9) according to the published procedures,^{13,14} we found, via NMR analysis, that in both cases the ¹⁰B label was totally scrambled.

¹⁰B and ¹¹B NMR spectra of the ¹⁰B labeled 3-MeB₆H₁₁ indicated that the ¹⁰B isotopic enrichment was restricted almost entirely to three of the six positions in the molecule (Figure 1), corresponding to one of each of the boron positions that are equivalent in the parent B_6H_{12} . The extent of ¹⁰B enrichment in the ${}^{10}B$ labeled 3-MeB₆H₁₁ was determined by integration of the ¹⁰B and ¹¹B NMR spectra. On the basis of a proposed mechanism for eq 11 (see Discussion section), the ¹⁰B labeled positions are B(1), B(2), and B(6). The percentages of ¹⁰B and ¹¹B in each position were estimated by two independent methods. In each case it was assumed that the boron in our laboratory stock of B_5H_9 was from California borax, which has an average composition of 19% ¹⁰B and 81% ¹¹B.¹¹ In method 1 the total ¹⁰B in the molecule was calculated on the basis of the introduction of exactly one boron enriched to 96% ¹⁰B. Each peak integral in the ¹⁰B and ¹¹B NMR spectra then corresponds to the relative isotopic composition at that position. In method 2 it was assumed only that no exchange of ${}^{10}B$ into the methyl-substituted position, B(3), occurred. The B(3) isotopic composition remained fixed at 19% ^{10}B and 81% ¹¹B, and the isotopic compositions of the other boron positions were related to the B(3) composition on the basis of their relative areas in the NMR spectra. The estimated uncertainty of the area measurements is $\pm 5\%$ with the exception of the B(5) resonance. Resonances due to inseparable impurities are observed in the NMR spectra, and since the measured ^{11}B in the B(5) position is unrealistically high, we assume that an impurity is responsible. The estimated uncertainty for this resonance is $\pm 12\%$. Nevertheless, the relative ¹⁰B enrichment is clear. Table I lists the measured ¹⁰B and ¹¹B NMR peak areas and isotopic compositions at each position of the ${}^{10}B$ labeled 3-MeB₆H₁₁ calculated on the basis of these two methods. The close numerical agreement between these methods supports the validity of the assumptions. Average values are also listed and are used in the discussion below.

Reaction of 3-MeB₆H₁₁ with Dimethyl Ether. The reaction of $3-MeB_6H_{11}$ with dimethyl ether produced $2-MeB_5H_8$ in good yield

⁽¹¹⁾ Shima, M. Geochim. Cosmochim. Acta 1963, 27, 911-913.

 ⁽¹²⁾ Gaines, D. F.; Schaeffer, R. Inorg. Chem. 1964, 3, 438-440.
 (13) Remmel, R. J.; Johnson, H. D., II; Jaworiwsky, I. S.; Shore, S. G.

J. Am. Chem. Soc. 1975, 97, 5395-5403.
 (14) Jaworiwski, I. S.; Long, J. R.; Barton, L.; Shore, S. G. Inorg. Chem.

^{1979. 18. 56-60.} (15) Young, D. E.; Shore, S. G. J. Am. Chem. Soc. 1969, 91, 3497-3504.

⁽¹⁶⁾ Gaines, D. F. In "Boron Chemistry"; Parry, R. W., Kodama, G., Eds.; Pergamon Press: Oxford, 1980.

Table I.	¹⁰ B and	¹¹ B NMR	Integration	Results for	or ¹⁰ B	Labeled	$3-MeB_6H_{11}$
----------	---------------------	---------------------	-------------	-------------	--------------------	---------	-----------------

	position							
	1	2	3	4	54	6		
rel peak areas ^a								
¹⁰ B	191	196	78	84	92	205		
$^{11}\mathbf{B}$	165	185	248	249	285	177		
isotopic composition method 1 ^b								
${}^{10}\dot{B}$	43	44	18	19	21	46		
¹¹ B	52	58	77	78	89	55		
method 1 sum	95	102	95	97	110	101		
isotopic composition method 2 ^c								
¹⁰ B	47	48	19	20	22	50		
¹¹ B	54	60	81	81	93	58		
method 2 sum	101	108	100	101	115	108		
average								
¹⁰ B	45	46	19	20	22	48		
¹¹ B	53	59	79	80	91	57		
average sum	98	105	98	100	113	105		

^{*a*}Arbitrary units. ^{*b*}Relative percentages (\pm 5) of that isotope in the indicated position based on the premise that one 96% ¹⁰B atom per molecule was introduced during its synthesis. ^{*c*}Relative percentages (\pm 5) of that isotope in the indicated position based on the premise that the B(3) position contains natural abundance boron. ^{*d*}A sample impurity reduces the certainty of these values, which are ~10% higher than possible.

Table II.	¹⁰ B and	¹¹ B NMR	Integration	Results i	for ¹⁰	B Labeled	l 2-Mel	B₅H₅	befo	ore and	after	Isomerization
-----------	---------------------	---------------------	-------------	-----------	-------------------	-----------	---------	------	------	---------	-------	---------------

		position					
		1	2	3,5	4		
 rel peak areas ^a	¹⁰ B before	126	93	299	237		
•	¹⁰ B after	191	114	384	189		
	¹¹ B before	193	197	360	124		
	¹¹ B after	143	157	272	132		
isotopic composition							
¹⁰ B before	method 1 ^b	25	18	29	46		
	method 2 ^c	26	19	31	48		
	average	26	19	30	47		
¹⁰ B after	method 1	32	19	32	32		
	method 2	32	19	32	31		
	average	32	19	32	32		
¹¹ B before	method 1	79	80	74	51		
	method 2	79	81	74	51		
	average	79	81	74	51		
¹¹ B after	method 1	73	81	69	67		
	method 2	74	81	70	68		
	average	74	81	70	68		

^aArbitrary units. ^bRelative percentages (\pm 5%) of the indicated isotope in the various positions based on the premise that, in the reaction of 3-MeB₆H₁₁ with Me₂O, B(1) is cleaved leaving B(2)-B(6) to form the 2-MeB₅H₈. ^cRelative percentages of the indicated isotope in the various positions based on the premise that the B(2) position contains natural abundance boron.

as well as diborane, methyldiborane, and pentaborane. Separation of the $B_5H_9/2$ -Me B_5H_8 mixture was accomplished with use of a high-vacuum, low-temperature distillation column. The 2-Me B_5H_8 was ¹⁰B enriched primarily in the 4 position and secondarily in the 3- and 5-positions. Table II gives the measured ¹⁰B and ¹¹B NMR peak areas for this compound and the isotopic composition in each position with use of methods analogous to those described above for 3-Me B_6H_{11} . In method 1 it was assumed that the overall isotopic composition of the ¹⁰B labeled 2-Me B_5H_8 was that expected if B(1) was removed from the ¹⁰B labeled 3-Me B_6H_{11} . In method 2 it was assumed only that no exchange of ¹⁰B into the methyl substituted position, B(2), occurred so its isotopic composition remained normal. Again, the two methods are in close agreement.

Isomerization of ¹⁰B Labeled 2-MeB₅H₈. The distribution of ¹⁰B and ¹¹B in the different positions of the specifically ¹⁰B labeled 2-MeB₅H₈ changed when it was treated with 2,6-lutidine. Table II lists the measured ¹⁰B and ¹¹B NMR peak areas and the isotopic composition in each position before and after treatment with 2,6-lutidine. Figure 2 shows the ¹⁰B NMR spectra. Within the limits of experimental error ($\pm 5\%$), no change was observed in the isotopic compositions equilibrated completely. A sample con-

Figure 2. Proton-decoupled ¹⁰B NMR spectra (21.4 MHz, pentane solution) of ¹⁰B labeled 2-MeB₅H₈ before and after isomerization with 2,6-lutidine catalyst. Upper trace is before isomerization. Resonance assignments are shown below the lower trace. Numbers beside resonances represent relative peak areas.

Synthesis of Skeletally Labeled Boranes

taining a large excess of 2,6-lutidine reached equilibrium in 3 h at room temperature. Using a 2,6-lutidine:2-MeB₅H₈ ratio of 1:10 increased the equilibration time to approximately 100 h.

Discussion

Synthesis of ¹⁰B Labeled 3-MeB₆H₁₁. The B₆H₁₁⁻ anion is formed by reaction of B₂H₆ with B₅H₈⁻ anion in dimethyl ether solution according to eq 5.¹³ On the basis of its ¹¹B and ¹H NMR spectra a structure was proposed for B₆H₁₁⁻ in which a BH₃ group occupies the vacant bridge position of the B₅H₈⁻ anion. Fluxionality of the hydrogen atoms in B₆H₁₁⁻ was observed with variable-temperature ¹H NMR spectroscopy.¹² Our experiments with 96% ¹⁰B labeled diborane, ¹⁰B₂H₆, in this system have demonstrated the fluxional character of the boron atoms as well. The added ¹⁰BH₃ group exchanged into all boron atom positions in the anion such that, after protonation, the ¹⁰B and ¹¹B NMR spectra of the isolated B₆H₁₂ contained equal ¹⁰B:¹¹B ratios in all resonance positions. Three resonances of equal area would also be observed if the exchange were limited to one of each of the pairs of equivalent positions. This is unlikely in light of other experiments with 3-MeB₆H₁₁ (vide infra).

The analogous 3-MeB₆H₁₁ synthesis (eq 7–9)¹⁴ was performed with ¹⁰B₂H₆ in the hope that the methyl substituent would hinder the isotopic exchange. However, when the published reaction conditions were employed, the ¹⁰B was distributed equally over the six positions in the 3-MeB₆H₁₁ molecule. This result indicates that movement of the methyl group from one boron atom to another (1,2-shift) has occurred as well as rearrangement of the boron and hydrogen atoms in the MeB₆H₁₀⁻ anion.

Selectively ¹⁰B labeled 3-MeB₆H₁₁ was produced when the reaction conditions were appropriately modified. Three of the six inequivalent boron positions in this product contained nearly 50% ¹⁰B while the other three remained approximately normal ($\sim 20\%$ ¹⁰B) (see Table 1). No further scrambling of boron isotopes appears to occur after protonation of the MeB₆H₁₀⁻ ion. Boron isotope exchange must occur exclusively in the MeB₆H₁₀⁻ cage in a very specific manner to give the labeled 3-MeB₆H₁₁ (eq 10, an asterisk indicates ¹⁰B enrichment). It is difficult to describe a mechanism that will equilibrate only three boron positions in the MeB₆H₁₀⁻ ion, but the observed ¹⁰B distribution indicates a very low activation energy for the exchange. Further investigations of this mechanism are in progress.

Reaction of 3-MeB₆H₁₁ with Dimethyl Ether: Synthesis of ¹⁰B Labeled 2-MeB₅H₈. Ammonia cleaves 3-MeB₆H₁₁ unsymmetrically to produce MeB₅H₉⁻ (eq 11),¹⁴ and protonation of the latter gives 3-MeB₅H₁₀ (eq 12). Shore et al. have discussed the regioselectivity of this reaction. The methyl substituent is thought

$$3 - Me_6H_{11} + 2NH_3 \rightarrow [H_2B(NH_3)_2][MeB_5H_9]$$
 (11)

$$[H_2B(NH_3)_2][MeB_5H_9] + HCl \rightarrow [H_2B(NH_3)_2]Cl + 3-MeB_5H_{10} (12)$$

to release electron density to the neighboring B(4) which leaves B(1) as the most positive boron and the preferred site of attack by a base.¹⁵ Symmetrical cleavage of B_6H_{12} by dimethyl ether to B_5H_9 and B_2H_6 is also known (eq 3).¹² Dimethyl ether apparently cleaves 3-MeB₆H₁₁ symmetrically in at least two ways. The primary reaction parallels the reaction with ammonia (eq 11), i.e., attack at B(1), as indicated by the reaction of dimethyl ether with the ¹⁰B labeled 3-MeB₆H₁₁ described above. The reaction produces 2-MeB₅H₈ which is ¹⁰B enriched primarily at B(4) and secondarily at B(3,5). The smaller excess of ¹⁰B at B(3,5) corresponds to what would be expected if one of the positions were labeled to the same extent as B(4) while the others were normal.

Figure 3. Base-swing mechanism for pentaborane isomerization.

Equation 13 illustrates a mechanism that is consistent with these data and requires very little relative motion of the boron atoms in closing the cage to form $2-MeB_5H_8$.

If dimethyl ether attack were to occur at B(4), closure by the mechanism described above would give $2\text{-}MeB_5H_8$ enriched with ^{10}B at B(1), B(3), and B(4). The extremely small excess of ^{10}B observed at B(1) indicates that this occurs only to a very small extent. Pentaborane(9) and MeB_2H_5 were observed as minor products in the reaction of dimethyl ether with $3\text{-}MeB_6H_{11}$, indicating some base attack at B₃ (eq 14). The mechanism of the

$$3-\text{MeB}_6\text{H}_{11} \xrightarrow{\text{Me}_2\text{O}} \text{B}_5\text{H}_9 + [\text{MeBH}_2]$$
(14)

formation of B_5H_9 is more difficult to visualize than that of 2-MeB₅H₈. Pentaborane isolated from the reaction of dimethyl ether with ¹⁰B labeled 3-MeB₆H₁₁ showed a base:apex ratio of 4.3 in its ¹¹B NMR spectrum, clear indication that a less specific cage closure process has occurred.

Pentaborane Isomerization. The first observation of the isomerization of pentaborane(9) derivatives was the conversion of $1-MeB_5H_8$ to $2-MeB_5H_8$ in 2,6-lutidine.^{10a} Although the reaction appears quantitative by ¹¹B NMR, it is thought to be an equilibrium process that greatly favors the basal (2-Me-) isomer. This is supported by the fact that the equilibrium constants for the isomerization of various pentaborane(9) derivatives differ by several orders of magnitude. The first mechanistic model for these reactions involved deprotonation of the borane by the base followed by rearrangement of the resulting borane anion.^{10a,c} Subsequent studies have shown that deprotonation is an unlikely step in the isomerization process.^{9a} Several types of base–borane adducts proposed as intermediates have been discussed in a recent paper, and two of these, I and II, appear to be consistent with the available data.¹⁶ In either case the base is coordinated to a basal

Figure 4. Diamond-square-diamond mechanism for triangulated cluster rearrangements.

Figure 5. Diamond-square-diamond mechanism for pentaborane isomerization.

boron atom. This coordination may interrupt the bonding interaction between the coordinated boron and the apex to give intermediate I. The coordinated boron may then swing around to a new position (Figure 3). Repetition of this "base-swing" process equilibrates all positions in the cluster. Alternatively, Lewis base coordination may cause cleavage of an adjacent boron-hydrogen bridge bond that would open one basal edge of the cluster to give intermediate II. Two mechanisms have been proposed for the rearrangement of II. The first involves movement of the substituents by a 1,2-shift mechanism in which the skeletal atoms maintain their original positions. This mechanism equilibrates the four basal atoms while the apical boron remains unique. The other proposed mechanism requires no movement of terminal substituents from one boron to another. Instead, the boron atoms themselves rearrange, taking their substituents with them, via a cluster rearrangement mechanism. Rearrangement of the boron atoms via intermediate II may occur through one or more diamond-square-diamond operations^{9d,17} (Figures 4 and 5). If there is a non-hydrogen substituent, only a 1,2-shift will allow exchange of the substituted boron with the others. The synthesis of ${}^{10}B$ labeled 2-MeB₅H₈, the first example of a skeletally labeled pentaborane(9) derivative, allows differentiation between these possibilities. When the ¹⁰B labeled 2-MeB₅H₈ was treated with 2,6-lutidine, the ¹⁰B label migrated smoothly into all positions except the methyl substituted B(2). While this result is consistent with either the base-swing or diamond-square-diamond mechanisms for cluster rearrangement (intermediates I and II), it clearly demonstrates that 1,2-shifts do not occur in this system.

No available data can distinguish between the base-swing and diamond-square-diamond mechanisms. Both require movement of four hydrogen atoms (two bridge-to-terminal and two terminal-to-bridge) in the course of one cluster rearrangement. We presently favor the diamond-square-diamond mechanism for two reasons. First, intermediate II has precedent in boron hydride chemistry. Addition of two electrons to the nido B_5H_9 pyramid to give an arachno B_5H_{11} type structure is logical. Second, the

diamond-square-diamond mechanism, combined with our recently proposed mechanism for the lower energy μ - to 2-isomerization with use of the same intermediate,^{9b,16} forms a reasonable and complete picture of the rearrangement of pentaborane(9) derivatives.

Experimental Section

Apparatus. All manipulations were performed in a nitrogen-filled glove box or in a standard high-vacuum line. The ¹⁰B and ¹¹B NMR spectra were obtained at 21.4 and 64.0 MHz, respectively, on a JEOL FX-200 spectrometer. Boron-11 NMR spectra at 86.7 MHz were obtained on a Brucker WH-270 spectrometer. Pulse delays of 2 s were used in all cases to ensure complete relaxation of the boron nuclei.¹⁸ Relative peak areas were measured on expanded spectra with a planimeter. Repeated measurements agreed to within 4%. The value used for the area of each peak was the average of three measurements.

Starting Materials. Dimethyl ether and pentane were stored over LiAlH₄ and were vacuum transferred directly into the vacuum line as needed. The 2,6-lutidine was dried over CaH_2 before use. Hdyrogen chloride (Matheson) was purified by repeated passage through a -126 °C U-trap into a -196 °C U-trap. Potassium hydride was obtained from Alfa Products as an oil dispersion and washed with pentane to remove the oil. Lithium aluminum hydride was purified by extraction with diethyl ether followed by removal of the ether by vacuum. Pentaborane(9) was obtained from laboratory stock. I-Methylpentaborane(9) was prepared according to a literature method.^{10b} The ¹⁰B labeled BF₃·CaF₂ (96% ¹⁰B) was purchased from Eagle Picher Industries, Miami, OK. Boron-10 boron trifluoride was liberated from this complex with use of a procedure adapted from one obtained from the supplier: the complex was outgased by heating at 90 °C for 5 h in a stainless steel tube attached to a high-vacuum line. The ¹⁰BF₃ was collected in a -196 °C U-trap as the temperature was raised slowly from 200 to 350 °C and subsequently purified by passing through a -126 °C U-trap into a -196 $^{\circ}$ C U-trap. Boron-10 diborane(6) was obtained from 10 BF₃ by modifications on a published procedure.¹⁹ Modifications included the use of 1,2-dimethoxyethane in place of diethyl ether to complex the BF3 and as solvent and the use of helium in place of nitrogen to carry the ${}^{10}B_2H_6$ into the vacuum line. The $^{10}B_2H_6$ was purified by repeated passage

through a -126 °C U-trap into a -196 °C U-trap. **Preparation of** ¹⁰B Labeled 3-MeB₆H₁₁. B₆H₁₂¹² and 3-MeB₆H₁₁,¹⁴ which were prepared according to the published procedures with ¹⁰B₂H₆, were not selectively ¹⁰B labeled by ¹⁰B and ¹¹B NMR. In an NMR tube experiment, no boron exchange was observed between B₆H₁₂ and ¹⁰B₂H₆.

Selectively ¹⁰B labeled $3 \cdot MeB_6H_{11}$ was isolated when the published procedure was appropriately modified. Typically, 5.3 mmol of K[1-MeB₅H₇] were prepared in 5 mL of Me₂O in a 100-mL round-bottom reactor equipped with a 12-mm Kontes 0-ring stopcock and a stirring bar. After condensation of 2.7 mmol of ${}^{10}B_2H_6$ into the flask at -196 °C, it as sealed, warmed to -78 °C, and stirred for 15 min. The stopcock was then opened, and volatiles were removed by vacuum distillation at -78 °C over a period of 15 min. The flask was immediately cooled to -196 °C, and 3-4 mL of anhydrous HCl were condensed onto the remaining solid. This mixture was warmed to -112 °C and stirred for 10 min. After HCl was removed by distillation at -112 °C, the flask was allowed to warm to ambient temperature, the volatiles distilling into a series of U-traps at -45, -78, and -196 °C. The -78 °C trap contained 0.389 g of 3-MeB₆H₁₁ (4.3 mmol), an 81% yield based on 1-MeB₅H₈. Neither repeated trap-to-trap distillations nor careful purification on a highvacuum, low-temperature distillation column were successful in removing impurities observed in the ¹⁰B and ¹¹B NMR spectra of this compound.

Reaction of ¹⁰B Labeled 3-MeB₆H₁₁ with Dimethyl Ether. In a typical experiment, 0.097 g of ¹⁰B labeled 3-MeB₆H₁₁ (1.08 mmol), prepared as described above, and excess dimethyl ether (~9 mmol) were condensed into a 1-L reactor. The flask was sealed, warmed to ambient temperature, and left overnight. The volatiles were separated by fractional distillation with U-traps at -95 and -196 °C. The -95 °C trap contained 0.065 g of material shown by ¹¹B NMR to be 2-MeB₅H₈ plus a small amount of B₅H₉. These were separated on a high-vacuum, low-temperature distillation column.

Reaction of ¹⁰B Labeled 2-MeB₃H₈ with **2,6-Lutidine.** ¹⁰B labeled 2-MeB₃H₈ (1.0 mmol), prepared as described above, was condensed into a 5 mm o.d., 3 mm i.d. NMR tube along with 0.1 mmol of 2,6-lutidine and pentane solvent. The tube was flame sealed and then warmed to ambient temperature, and ¹⁰B NMR spectra were obtained periodically until no further changes could be observed in the spectra (100 h). The

^{(17) (}a) Kaczmarczyk, A.; Dobrott, R.; Lipscomb, W. N. Proc. Natl. Acad. Sci. U.S.A. 1962, 48, 729-733. (b) Hoffmann, R.; Lipscomb, W. N. Inorg. Chem. 1963, 2, 231-232.

 ⁽¹⁸⁾ Weiss, R.; Grimes, R. N. J. Am. Chem. Soc. 1978, 100, 1401-1405.
 (19) Shapiro, I.; Weiss, H. G.; Schmich, M.; Skolnik, S.; Smith, G. B. L.
 J. Am. Chem. Soc. 1952, 74, 901-905.

sample remained homogeneous throughout the experiment. In another experiment, 1.0 mmol of ^{10}B labeled 2-MeB_5H8 in a large excess of 2,6-lutidine reached equilibrium in 3 h.

Acknowledgment. This research was supported by grants, including departmental instrument grants, from the National Science Foundation. We thank Gail Steehler, Joe Heppert, and Joan Kunz for helpful discussions.

Registry No. B₅H₉, 19524-22-7; B₂H₆, 19287-45-7; MeB₂H₅, 23777-55-1; K[1-MeB₅H₇], 56009-96-2; ¹⁰B₂H₆, 19465-29-3; Me₂O, 115-10-6; 2,6-lutidine, 108-48-5.

The Convergent Synthesis of Polyether Ionophore Antibiotics: The Synthesis of the Monensin Spiroketal¹

Robert E. Ireland,* Dieter Häbich,² and Daniel W. Norbeck³

Contribution No. 7074 from the Chemical Laboratories, California Institute of Technology, Pasadena, California 91125. Received September 28, 1984

Abstract: The monensin spiroketal 2, a versatile intermediate for the synthesis of polyether ionophore antibiotics, is prepared from D-fructose. Key steps include the ester enolate Claisen rearrangement of a glycal propionate, expansion of a furanoid to a pyranoid ring, and the acid-catalyzed equilibration of a bicyclic ketal to a spiroketal. An alternative approach, entailing the hetero-Diels-Alder condensation of the exocyclic enol ether 15 with acrolein, is thwarted by facile isomerization to the endocyclic enol ether 18.

The complex chemistry and potent biological activity of the polyether antibiotics have engaged widespread interest.⁴ As ionophores, these compounds possess a striking ability to perturb ionic gradients by catalytically transporting cations across lipid barriers.⁵ While optimal membrane and ion selectivity remain elusive goals, the commercial use of monensin for control of poultry coccidiosis⁶ and enhancement of ruminant feed utilization⁶ have encouraged intensive efforts in the isolation and study of these compounds. Several have demonstrated potential in human medicine, particularly as cardiovascular agents.⁷ In addition to their diverse biological activity, these antibiotics display a formidable molecular complexity, and the attendant challenge of total synthesis has been taken up by numerous research groups.8 Structurally, most of the polyether ionophores feature linear chains

(1) Grateful acknowledgement is made for support of this investigation by a grant from NIH (No. HL-23167). Acknowledgement is also made for the use of the Southern California Regional NMR Facility (National Science Foundation Grant CHE-79-16324).

(3) National Science Foundation Research Fellow, 1981-1984.

(4) Westley, J. W., Ed. "Polyether Antibiotics: Naturally Occurring Acid

(d) Wedres"; Marcel Dekker, Inc.: New York, 1982; Vols. 1 and II.
(5) Pressman, B. C.; Harris, E. J.; Jagger, W. S.; Johnson, J. M. Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 1949.
(6) Ruff, Michael D. In "Polyether Antibiotics: Naturally Occurring Acid Ionophores"; Westley, J. W., Ed.; Marcel Dekker, Inc.: New York, 1982; Vol. I, Chapter 6.

(7) Hanley, H. G.; Slack, J. D., ref 6, Chapter 8. Reed, P. W.; Bokoch, G. M., ref 6, Chapter 9. Osborne, M. W.; Wenger, J.; Zanko, M.; Kovzelove, F.; Cohen, M. R., ref 6, Chapter 10.

(8) (a) Calcimycin: Evans, D. A.; Sacks, C. E.; Kleschick, W. A.; Tabor, T. R. J. Am. Chem. Soc. **1979**, 101, 6789–6791. Grieco, P. A.; Williams, E.; Tanaka, H.; Gilman, S. J. Org. Chem. **1980**, 45, 3537–3539. (b) Lasalocid A: Nakata, T.; Schmid, G.; Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y. J. Am. Chem. Soc. 1978, 100, 2933-2935. Ireland, R. E.; Anderson, R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.; Thaisrivongs, S.; R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.; InaistwongS, S.;
 Wilcox, C. S. *Ibid.* 1983, *105*, 1988–2006. (c) Monensin: Fukuyama, T.;
 Akasaka, K.; Karanewsky, D. S.; Wang, C.-L. J.; Schmid, G.; Kishi, Y. *Ibid.* 1979, *101*, 259–263. Still, W. C.; McDonald, J.; Collum, D. *Ibid.* 1980, *102*,
 2117–2121. (d) X-14547A: Nicolaou, K. C.; Papahatjis, D. P.; Claremon,
 D. A.; Dolle, R. E., III. *Ibid.* 1981, *103*, 6967–6969. Roush, W. R.; Meyers,
 A. G. J. Org. Chem. 1981, *46*, 1509. Edwards, M. P.; Ley, S. V.; Lister, S.
 G. Tetrahedron Lett. 1981, 361. (e) Narasin: Kishi, Y. Aldrichim. Acta
 1980, *13*, 23–30. (f) Salinomycin: Kishi, Y.; Hatakeyama, S; Lewis, M. D. Front. Chem., Plenary Keynote Lect. IUFAC Congr., 28th 1981 (Pub. 1982), 287-304. Laidler, K. J., Ed., Pergamon: Oxford, U.K. (g) General Methods: Walba, D. M.; Stoudt, G. S. Tetrahedron Lett. 1982, 727-730. Amouroux, Walba, D. M.; Stoudi, G. S. Ternanearon Lett. 1982, 727–730. Amouroux, R.; Folefoc, G.; Chastrette, F.; Chastrette, M. Tetrahedron Lett. 1981, 2259.
Walba, D. M.; Wand, M. P. Tetrahedron Lett. 1982, 4995–4998. (h) Reviews: Kishi, Y. In "Polyether Antibiotics: Naturally Occurring Acid Ionophores"; Westley, J. W., Ed.; Marcel Dekker, Inc.: New York, 1982; Vol. II, Chapter 1. Wierenga, W. In "The Total Synthesis of Natural Products"; ApSimon, J., Ed.; Wiley: New York, 1981; Vol. IV, p 263q.

of substituted tetrahydropyran and tetrahydrofuran rings. Comparison reveals that nearly all these rings recur with high frequency, often in stereochemically indistinguishable sequences. The unified biosynthetic pathway proposed by Cane, Celmer, and Westley underscores the structural identities and combinatorial diversity of these antibiotics.9

We have recently developed a versatile, building-block approach to the polyethers in which prefabricated tetrahydrofuran and tetrahydrogen rings are joined via the ester enolate Claisen rearrangement. This work has culminated in the total synthesis of lasalocid A^{8b} and its enantiomer¹⁰ from readily available carbohydrates. In this and the following two papers in this issue, we report the preparation of several additional subunits for the synthesis of naturally occurring polyethers and potentially informative analogues.

Serving as rigid bands in the polyether backbone, spiroketals play a critical role in establishing the coordination geometry necessary for ion complexation.¹¹ Since one of the spiro oxygens usually acts as a ligand as well, spiroketals are prominent features of the polyether class.¹² Monensin's¹³ spiroketal is a particularly attractive synthetic target, as it occurs in at least eight other ionophores. Disconnection of the C2,3 and C12,13 bonds of monensin generates the common structural subunit 2, and the results of an aldol and ester enolate Claisen transform are shown in Scheme L

Our synthetic plan for this polyether building block developed out of model studies which demonstrated the value of the hetero-Diels-Alder condensation in the construction of spiroketals (Scheme II).¹⁴ Although the rigidity of the spiroketal system itself can mediate control of relative stereochemistry,¹⁵ in this

(10) Ireland, R. E.; Courtney, L.; Fitzsimmons, B. J. J. Org. Chem., 1983, 48, 5186-5198.

(11) Dobler, M. "Ionophores and Their Structures"; Wiley: New York, 1981.

(12) For other spiroketal containing natural products, see: Danishefsky, S. J.; Pearson, W. H. J. Org. Chem. 1983, 48, 3865–3866. Schreiber, S. L.; Sommer, T. J. Tetrahedron Lett. 1983, 4781–4784. Crimmins, M. T.; Ban-kaitis, D. M. Ibid. 4551–4554. Phillips, C.; Jacobson, R.; Abrahams, B.; Williams, H. J.; Smith, L. R. J. Org. Chem. 1980, 45, 1920–1924 and references contained in these articles

(13) Agtarap, A. G.; Chamberlain, J. W.; Pinkerton, M.; Steinrauf, L. J. Am. Chem. Soc. 1967, 89, 5737

(14) Ireland, R. E.; Häbich, D. Tetrahedron Lett. 1980, 1389. Ireland,

(15) Ireland, R. E.; Daub, J. P.; Mandel, G. S.; Mandel, N. S. J. Org. Chem. 1983, 48, 1303–1312.
Ireland, R. E.; Daub, J. P.; Mandel, G. S.; Mandel, N. S. J. Org. Chem. 1983, 48, 1312–1325.

⁽²⁾ Fellow of Deutscher Akademischer Austausendienst.

⁽⁹⁾ Crane, D. E.; Celmer, W. D.; Westley, J. W. J. Am. Chem. Soc. 1983, 105, 3594-3600